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ABSTRACT

The use of Service Oriented Architectures, namely web services, has become a
widely adopted method for transfer of data between systems across the Internet as well as
the Enterprise. Adopting a similar approach to embedded vdevices is also starting to
emerge as personal devices and sensor networks are becoming more common in the
industry. This research examines web service encoding mechanisms currently in place
and their system resource utilization on both a full computer system and an embedded
device. Research was conducted to first baseline SOAP and JSON serialization and
deserialization performance, and then develop a web service architecture for an
embedded device and verify similar performance characteristics exist. In the process of
developing the second experiment, a flexible Python-based web service architecture is
developed and implemented on an embedded device. Performance of SOAP, XML over
HTTP, and JSON encoding mechanisms are measured and compared in this environment.
Attempts to implement a similarly functioning architecture using a Java framework called
XINS failed due to resource constraints imposed by the embedded device.

In every case tested, JSON encoding significantly outperformed the tested XML-
based encoding, showing clear advantages in both processing performance and network

bandwidth utilization.  Also shown is that XML over HTTP has performance

i
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characteristics similar to that of JSON for smaller, less complicated data objects, but

JSON is significantly more efficient when more complicated data objects are used.

1l
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CHAPTER I

INTRODUCTION

1.1 Topic Introduction

With the introduction and subsequent expansion of the World Wide Web, an
explosion of software development paradigms and technologies have been developed and
applied to other aspects of the science of computers. Most of these technologies are
focused in providing a mechanism for the traditional application to migrate to a web-
enabled application allowing decentralized and scalable availability to a variety of
devices and users. The Service Oriented paradigm encompasses this set of technologies,
specifically in the use of web services.

The use of services for web applications has become very popular in creating web
environments that interact with the user much like a traditional application would,
constantly pushing the envelope of software development. Also challenging, a push for
fault resilient software solutions have become ever more requested by software
consumers. Web services or the use of other Service Oriented Architectures (SOA) have
come to the forefront as a method for creating this type of interaction and availability
across varying platforms. According to Thomas Erl, the top selling SOA author, creator
and editor of SOA Magazine, and contributor to the SOA community through published
articles and research, the following is a definition for a Service Oriented Architecture [1]:

“SOA establishes an architectural model that aims to enhance the efficiency,
agility, and productivity of an enterprise by positioning services as the primary
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means through which solution logic is represented in support of the realization of
strategic goals associated with service-oriented computing.”

The use of SOA is not strictly reserved for web-based interaction. These
technologies can and have been adapted to other arenas, such as in applications where a
universal and standardized protocol is required. Sensor networks are also implementing
web service architectures to standardize communication.

Many industrial devices [2, 3] make use of embedded controllers and technologies
to keep the size and power consumption down. Vendors of such devices, in order to meet
these stringent requirements, create devices that are specific to their purpose and have
just enough system resources to perform their job. In doing so, proprietary protocols and
communication busses are developed to streamline the performance of their particular
device.

Sensor networks are made up of potentially thousands of devices known as motes
that have relatively limited resources for processing, sometimes even fewer than
industrial control devices depending on their use. Each device serves a specific purpose,
such as relaying temperature data or video to a central location. These devices integrate
together to create a network that is capable of anything from monitoring industrial
procésses or manufacturing plant operations to use in military surveillance systems, and
beyond. Devices used in a sensor network are designed with low power consumption in
mind, since they are usually not connected to a power source other than an on-board
battery. Depending on the implementation, sensor networks (particularly wireless sensor
networks) are capable of adapting to their environment and adjusting communication

methods to accommodate their new environment.
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13
While there are similarities between sensor network motes and industrial control

devices, they typically serve different purposes. For example, an industrial control
device usually has external sensors attached to it that allow for it to perform its function.
In addition, they perform a certain level of logic on the data, commonly using ladder
logic, such that they can interact with their environment. Sensor network motes, on the
other hand, generally do not have that type of interaction. Generally motes of similar size
and resource configuration are used for data acquisition only.

Despite their differences, industrial control devices and sensor networks suffer
from similar problems. For example, network bandwidth is a precious commedity when
multiple devices are required to share it. Constant communication can absorb all
available bandwidth causing network collisions and lost communications. These issues
can severely limit the expandability of such solutions to a point that they may not be
useful. Updating the network technology used can increase performance, but it is not the

most economical solution and does not solve the problem long-term.

1.2 Problem Definition

The interoperability of sensor networks, industrial control devices, and other
proprietary embedded device solutions such as mobile communication devices, smart
phones specifically, can be improved by using a universal communications mechanism.
Such a mechanism can then be used across a network environment allowing data to be
transferred in a consistent manner. The ability for web services to function in a cross-

platform environment using well-known protocols is a good fit for such a solution.
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The resource utilization of the protocols, however, is of concern. Web service

protocols such as SOAP were not designed for the use in an embedded environment,
however it does provide a universal mechanism for the transmission of data. SOAP is
XML-based, which can quickly consume available system resources. Other protocols
exist that perform the same function, which are not XML-based. It is assumed that
replacing SOAP with a different protocol that does not use XML, more efficient system

resource utilization could be realized.

1.3  Hypothesis

The hypothesis for this research is the following:

Ha: Web services can reduce system resource utilization by using a transmission
protocol that is not XML-based.

The associated null hypothesis is the following:

Hy: Web services using an XML-based protocol would see the same or higher
system resource utilization by using a transmission protocol that is not XML-based.

As a clarification, the term system resource utilization represents system resource

use such as CPU time and network bandwidth use.

1.4  Research Questions

The most important question to answer is whether or not web services can achieve
better resource utilization, and through that higher performance, using a different
protocol than SOAP as its transport mechanism on an embedded device. In order to

determine if this is achievable, it must be divided into more specific questions.
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Can a web service protocol be found that provides higher performance than

SOAP? Can that performance difference bet attributed to XML in some way? Critical to
this question is identifying the protocols that are currently used by web service
architectures and determine their performance characteristics in regard to processing time
and network utilization requirements. Testing these key metrics can identify which
protocol is better performing.

Once the characteristics of the protocols have been found, do these performance
patterns map directly to use on an embedded device? The performance on an embedded
device can vary as resources are constrained significantly in comparison with a web
service provided by a company web server. Performing similar measurements on an
embedded device will provide the required information to determine if the performance
model identified can be applied to an embedded device.

Is the identified performance increase associated with better resource utilization?
The utilization of system resources can be attributed to a higher performing solution, but
not in all cases. Some solutions perform consistently regardless of the number of
resources made available to them. Other potential performance latency issues can also
limit the performance of the solution, identified by the protocols functioning at the same

performance level.

1.5  Proof Criteria
This section examines the null hypothesis and provides a set of proof criteria.
These criteria are broken into two separate sections: criteria that identify an end point for

the research work and criteria that identify success, rejecting the null hypothesis.
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As 1dentified above, the null hypothesis is as follows:

Hyp: Web services using an XML-based protocol would see the same or higher
system resource utilization by using a transmission protocol that is not XML-based.

To simplify this statement, changing the protocol used in a web service
architecture to one that is not XML-based will not increase the performance of the system
and could possibly decrease performance.

To signify the completion of the work, the following proof criteria will be used:

* The selected encoding methods from both experiments show a trend
indicating that methods not using XML require less processing time for
each data object type.

* The selected encoding methods from both experiments show that methods
not using XML require less network bandwidth for each data object type.

* The selected encoding methods implemented on an embedded device,
which do not use XML, indicate higher performance per character input.

The following criteria are used to determine that the null hypothesis has been
rejected.

* For the selected protocols, a protocol that is not XML-based has lower
system resource utilization in both an embedded environment as well as a

system environment in which resources are not constrained.

1.6  Repeatability
Since the purpose of this research is to find variations of the mean system

resource utilization in an interval, the sample must truly contain the mean of the
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population data. For this type of research, a complete population cannot be obtained

since an almost infinite number of parameters can affect the experiment. Due to this fact,
a representative sample of the population distribution will be gathered using a large
number of runs in each experiment with as many parameters fixed as possible. For

instance, each protocol and data type combination will be executed 1000 times.

1.7  Assumptions

Several assumptions are made to focus the scope of this research. Some have
already been identified above, however are repeated below for consistency. They are not
listed in any specific order.

All communication between devices will take place over a wired network.
Wireless networking can introduce variables that will affect the performance of
communications, and by removing this component these potential performance issues are
also removed.

Network communication on the wired network will not contain any network
devices such as switches or routers. Communication between devices will take place
through an isolated crossover cable, thus removing any degradation of communication
performance caused by the network devices themselves. While this does not remove
performance latency during the process of communication completely, it does remove
components that are not required and will reduce the latency of data transfer focusing on
the web services themselves.

All functions required for web service communication will not necessarily

implemented in all experiments. The goal of this research is to isolate the system
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resource utilization of the transmission protocol specifically, not additional functions

required for full web service functionality.

The embedded device used for testing will be a resource constricted device, but
not to the point that it restricts the ability to test the resource utilization of various web
service frameworks that may exist. The device must be flexible enough to be
reconfigured while at the same time have resource restrictions to better emulate an

embedded device that may be used in a sensor network or as an industrial control device.

1.8  Dependencies

As a core dependency for this research, a set of protocols or encoding
mechanisms that are used for web service communication must be identified. Several
protocols must be selected so they can be compared to identify a protocol that has less
system resource utilization than an XML-based communication protocol.

Some risk is involved when selecting ways to implement these protocols. Coding
the protocols from scratch can introduce inconsistencies and additional performance
bottlenecks when compared to existing implementations. Using existing implementations
or frameworks are susceptible to the same issues.

The data sets that are used may not show a significant use of system resources
when applied to the selected set of proiocols. Data sets that are small may perform
equally well in any of the selected protocols.

Finally, results may not be easily reproducible using a different embedded device
or environment. A different device may utilize a different operating environment, which

can affect the system resource utilization significantly. In addition, the hardware
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configuration of the embedded device can be significant in reproduction of results. For

example, having less memory on the device can cause additional memory swapping or

cause the web service to cease functioning altogether.

1.9  Limitations

While embedded devices are readily available for experimentation, finding one
that provides the flexibility needed for this research was challenging. Having multiple
embedded devices with varying hardware configurations available to perform an analysis
of utilized resources would allow for a more complete investigation, however device
availability and funding constraints limited the quantity of devices that could be
purchased. The resources a particular embedded device has available can create different
resource utilization analysis results when compared to another device. For this reason,
only one embedded device model was selected for this purpose, proving the concept.

The number of possible data sets that could be evaluated is almost limitless. The
selected data sets were limited to nine, representing a simple message being passed
containing a single value to a complex structure that is multiple layers deeﬁ. With the
selected data sets, performance utilization characteristics can be captured which will

identify anything from the simplest of communications to a complex object environment.

1.10 Constraints
To properly demonstrate that other protocols not XML-based have lower system
resource utilization than their XML-based counterparts, a subset of available protocols

needs to be selected. For this reason, protocols that are commonly used at the time this
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research was developed were used. The intention was not to create a new protocol, but to

identify those that have lower performance utilization and can be used on an embedded
device.

While this research focuses on Service Oriented Architectures and embedded
devices, an embedded device that is flexible enough to support multiple configurations
was selected. Many devices exist that can be used as the base platform for this research
[4, 5], however due to the time required to work with each, using a device that can easily
be reconfigured will allow for more focus on the research than the hardware

implementations that could be used.
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CHAPTER I

LITERATURE REVIEW

2.1  Introduction

A significant amount of research has been completed in the use of SOA in varying
environments, as well as the protocols that are used for communications. This chapter
outlines the research that has been completed surrounding sensor network architectures as
well as SOA and its commonly used protocols. Performance characteristics are also

examined in the reviews.

2.2 Design Methodologies

In a paper written by Bonfatti, Gadda, and Monari [6], an approach for supporting
the initial phases of the Programmable Logic Controller (PLC) software lifecycle were
explored. The aim was to support the critical phases such as requirement specification,
requirement analysis, and software design. Through their research, they developed a
method called EASIER, which draws on the object- oriented paradigm. A case study was
performed using what they called the ‘picking bay,” a component of a large automated
warehouse. The system is designed to select specific goods and remove them from the
warehouse. Their results indicated that hard problems could be solved using the object-
oriented model.

Service Oriented Architecture (SOA) has been incorporated into sensor networks

with the research of individuals from the University of Prestoria [7]. The authors discuss
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the challenges that have been created by wireless sensor networks as well as actor

networks. The authors implemented a WSAN solution named Cerberus, a home security
system, and documented the difficulties they had with the solution as well as offering a
proposed solution called OSGi. OSGi implements SOA technologies for the
management of the network infrastructure. One of the major issues that the authors cite
as being a problem is the ability to develop software applications in such an environment.
Another issue that they identified is the fact that it is difficult to expand existing systems
features. The authors cited an example of adding health monitoring to a system that does
not already have that ability.

Bonivento, involved in the OSGi solution, performed further investigation into
sensor network, specifically for industrial applications[8]. A broad methodology is
presented discussing a process to map an application to a sensor network. The process, at
a level, starts with a description of the control algorithm to be used as well as possible
hardware for the solution. A case study of a control system for use in a manufacturing
environment is included, showing how the methodology covers the complete design
process.

The use of sensor networks is not limited to use in industrial applications.
Common objects, such as a vehicle, also contain such networks. Several individuals from
Daimler-Benz and Mercedes-Benz [9] presented activities within their organizations that
were focused on developing an optimal process for designing electronic control units
(ECUs) which are used in automotive applications. The authors indicate several

examples where such sensors are used, such as vehicle drive train and braking systems.
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Three levels of the development process are identified, as well as methods and tools that

are to be used with such as process.

Web services can be used as a communication method for sensor networks, as
Van Engelen [10] has shown. Code generation techniques used to implement XML web
services on embedded devices are discussed. A product called gSOAP [11] is used for
implementation of a SOAP web service, utilizing the C and C++ programming
languages. Van Engelen describes the methodologies behind SOAP communication and
how gSOAP implements them. An example is provided which gathers the temperature of
a sensor probe and sends it via the web service. Several gSOAP optimizations are
discussed which are included in the latest release of the product.

In this paper [12], the authors use gSOAP to build a toolkit for web services
called Devices Profile for Web Services (DPWS). The goal of DPWS is to allow
resource-constrained devices to host web services in their entirety. Discovery,
description, subscription, and event handling is incorporated within this solution. The
SOAP encoding method is used in this solution for messaging between devices. The
authors believe DPWS has promise in automated industrial environments since it is
targeted specifically for resource-constrained devices.

The discussion of a web service layer, called middleware, is discussed in this
paper [13] as a possible solution for reducing the complication of developing a
distributed solution using network-capable embedded systems. The authors identify how
middleware has not been introduced in the design flow of these solutions, and how

middleware can support various development paradigms. An implementation of this
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system has been completed using a wireless sensor network. Three paradigms (Database,

Tuplespace, and Object-Oriented) were tested and analyzed in the paper.

The authors of this paper [14] discuss the creation of a new language that can be
used to make the development process for sensor network applications easier for
developers. A framework was created called Sensor Network Application Construction
Kit (SNACK) that acts as a set of ‘building blocks’ allowing an application to be
developed quickly and easily. A simple data acquisition application was developed using
the newly formulated framework.

A framework called Rappit [15] is discussed in this paper, identifying the
shortcomings of high level scripting when used with embedded devices. The Rappit
framework is designed to alleviate some of the shortcomings due to abstraction such as
speed of execution and a shortened development cycles. The framework was
successfully used in the development of a mini-FDPM system.

In this paper [16], the authors discuss the challenges of developing wireless
sensor network solutions, such as power usage and resource constraints. They discuss
combining a low-level protocol stack with management capabilities, implementing the
stack so it is not so resource intensive.

Requirements for the development of sensor network applications is evaluated in
this paper [17]. The authors have identified one of the key elements as being an overall
system architecture. The requirements for such a solution were discussed and a small

device was developed as well as an operating system called TinyOS.
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The authors of this paper [18] discuss the implementation of the directed

diffusion, data centric paradigm for coordination of various nodes on a sensor network.
Every node on the network is aware of the application, and allows energy savings in the
way that paths are selected and data is cached as it is sent across the network. The
authors study this technique using a remote-surveillance sensor network.

Depending on the sensor network type, it may need to operate in a real-time
environment. This paper by M. N. Matelan [19] discusses a model for the development
of a real-time control device which consists of three main areas needing to be considered
during the design process. The first area is the selection of the hardware. The second,
the development of the software to run on the selected hardware platform, and the final
area is the monitoring of the system to verify real-time integrity. The author introduces
the concept of hardware binding, and indicates that binding the software to the hardware
later in the design cycle helps develop a machine-independent solution.

In this paper [20], the authors believe that emerging technologies will see to the
end of the traditional computer. Instead, systems will facilitate everyday living. Due to
the number of devices that are available, a framework is needed to allow all of them as
well as other actors to communicate together developing an intelligent system. An
approach for a distributed web-based management framework is discussed, called
DAFNY. The OSGi framework is also referenced in this paper.

The management of a large distributed network can be a very challenging
problem. The authors of this paper [21] indicate that ‘current solutions are a combination

of centralized management and significant over-provisioning of the infrastructure.” A

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com



26
service for monitoring such a solution, S, is examined. This solution is designed to

detect failures on the network, adaptive resource placement, and higher performance.

The sensors on a sensor network, also known as motes, function with limited
resources at their disposal as they frequently function on battery power. Most utilize a
battery or a solar power solution, making them susceptible to power loss causing them to
fall offline. When this happens, the remaining sensors on the network may need to be re-
programmed to take on additional roles. Doing so consumes additional power from the
remaining nodes, as it is not a very power efficient operation. The others of this paper
[22] discuss the use of a virtual machine infrastructure to assist with the process of re-
provisioning the motes. Using a virtual machine, complex programs can be made to be

very small, requiring less power to transmit and configure.

2.3 Implementations

A number of sensor network implementations exist in industry, as it is a versatile
technology with a lot of capability. The following implementations provide examples of
how such a grouping of embedded devices can be used, as well as problems that can
occur with the use of them.

A particular sensor network implementation was used in the deve'lopment of an
Emergency Medical Service (EMS), which allowed communication of patient status to
hospitals while they are being transported in an ambulance [23]. An overview of existing
practices is discussed in the paper, as well as the architecture of the system. As a proof of
concept, an ambulance was driven throughout a city containing two ‘patients.” It was

found that the transmission of patient information was delayed, possibly caused by the

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyyanwy.manaraa.com



27
implementation of the web service architectures that were used. Noted were overhead of

the SOAP protocol and the parsing of XML information. They also note that “binary
data gets expanded (by an average of 5-fold) when included in XML, and also requires
encoding/decoding of this data,” and since the implementation utilizes wireless
technologies with less bandwidth for data transport, it increases the network congestion
introducing additional delay.

Sensor network systems are not only used in private industry, but in military
systems as well. VigilNet [24] is a sensor network designed for surveillance of
opponents in the field of battle. It is often dangerous for human personnel to attempt to
perform surveillance activities; however being able to deploy unmanned surveillance
missions will eliminate the need to put individuals in danger. The paper further discussed
the development of the VigilNet system and an evaluation of its middleware components
that are the core foundation for the system.

The idea for distributed network devices has been around for a number of years.
In this paper [25] mini-computer devices are discussed in reference to the automation of a
laboratory. The goal of the project was to reduce the amount of time that was required to

perform six months worth of experiments to a timeframe of two weeks.

2.4  Service Oriented Architectures

Service Oriented Architectures are becoming more prevalent as design
architectures for modern solutions due to their ability to be scalable and re-usable. This
technology can also be used in sensor networks and industrial controls to relay

information across the shared network.
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In this paper [26], the authors discuss the fact that the World Wide Web has

become successful due to the design of its software architecture, and its ability to service
as a distributed hypermedia application. The modern architecture focuses on scalability,
generalization independent and intermediary components to increase performance and
communicate with legacy technologies. A technology that is currently used in SOA is
Representational State Transfer (REST) is introduced in the paper, and compared to other
current web architectures.

REST is also discussed in this paper [27], stating it “guided the recreation and
expansion of the modern web.” The authors believe that some of the capabilities of
REST are underutilized, and discuss additional web architectures. During their process,
an expansion of REST, Computational REST (CREST) is introduced.

As with any technology, there are always difficulties with implementation. In this
paper [28], the authors discuss the fact that SOA architectures involve ‘the use of
incomplete information.” For example, it is possible that a web service may not be
available at a time that it is required. This can be a challenge for the web service
consumer, as it will require more information to switch to the new or alternate solution.
The authors state that they are performing research to developing a process for addressing
these issues based on the use of semantic web services.

Various individuals and groups have attempted to analyze the trends of
technology developed and used on the World Wide Web. Mehdi Jazayeri has done so in
this paper[29], stating that since the dawn of the Internet, the applications that use it have

become more complex in nature. He explains that the Web has expanded in function
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from providing static content to becoming a platform for applications. He further

discussed the fact that web development technologies have adopted techniques from the
Software Engineering field and that he believes future advances in browser technologies
will advance the Web even further.

SOA is not made up of a specific technology, but is a composite of varying
technologies that work together to form the solution. Some of the technologies used in
AJAX, a framework designed for partial post back of web pages, contain technologies
that SOAs utilize. This paper discusses a framework called Exhibit [30] which utilizes
JSON, a lightweight language used to describe JavaScript objects, for presenting content
on a web page. The author indicates that large companies and organizations have
exploited technologies allowing them to provide richer content than what can be provided
by an individual, and that the use of this technology will help put the individual on a level
playing field.

More specific to sensor networks and embedded devices, this paper [31] discusses
the benefits of using SOA for communication between devices that are resource-
constrained smart devices, as well as provides a discussion on such an implementation.
A method for integration of ‘dumb’ devices into such a solution using a gateway device

is also discussed in the paper.

2.5  Protocol Performance Characteristics
Service Oriented Architectures can make use of a number of protocols for

communication purposes, however the popular encoding method uses the SOAP protocol.
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This section describes some of the research that has been completed regarding web

service performance, specifically regarding the protocols used.

This paper [32] analyzes the performance of SOAP for the use of mobile
applications. The authors found that SOAP used over HTTP and TCP is not efficient and
can create a high amount of latency during transmission due to the overhead that SOAP
creates as well as in the transmission protocol TCP. The utilization of UDP was found to
provide a higher throughput compared to HTTP and TCP for the transmission of SOAP.

The SOAP protocol utilizes an XML format to form the basic structure of the
protocol. Since the majority of currently implemented web service architectures utilize
the SOAP transmission protocol, they must be able to process XML to encode and
decode the data transmitted via the web service. The authors of this paper [33] develop a
method for benchmarking XML parsers and used their testing method on several
common XML parsing solutions. Inefficiencies were found in these solutions that would
affect their performance, and led the development of a high performance parser
implementation based on their research.

XML itself has advantages as well as disadvantages that it brings to the SOAP
protocol as Schmelzer [34] has identified. XML uses a highly structured format and is
human readable, allowing the data being transmitted within it to be accessible without the
use of special tools for decoding. Another key advantage is that it is very flexible,
allowing other languages to be defined using it, such as the SOAP protocol. These
benefits come at a steep price however as XML requires significant processing power to

encode and decode the data stored within. Allowing the data to be human readable does
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not allow for binary data to be stored easily. And finally, the amount of space required to

represent data in XML can be very large due to the structure of an XML document.
Lawrence [35] agrees that while XML is easily readable as it is self describing
and is a standardized format for data transfer, it is not space efficient. In an experiment
that he had performed utilizing varying formats for storing data, he had calculated the
overhead required to store data in a particular format, per attribute. His findings are

shown below in Table 1.

Table 1 — Overhead Per Attribute For File Formats [35]

Format Overhead Per Attribute
CSv 1 (or3)

FSV S-D

XML (encode empty) 2*¥N+5

XML (no empty) (2*N+5)*(1-E)

A comma separated values file (CSV) is the only format that Lawrence
investigated that has constant overhead per attribute recorded. FSV files are proportional
to the size of data being stored. The overhead is the total size allowed for the data item to
be stored with the actual data size subtracted. XML is listed twice in the table as XML
can contain null values but still contain the XML markup representing the attribute. In
the case that null attributes do not have tags stored, the overhead is twice the size of the

attribute name plus five characters for tag delimiting characters. If delimiters with null
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values are stored in an XML file, the probability that the field has data is multiplied by

the size of the attribute name and delimiting characters.

Lawrence further identifies that alternatives to XML have been identified, such as
JavaScript Object Notation (JSON) [36] which utilizes fewer delimiter characters at the
expense of some human readability. Figure 1 provides an example of a JSON response

producing a random integer value with the attribute name of ‘simplelnteger’.

{"result": {"simplelnteger": 9639}}

Figure 1 - Example JSON Response

Attempts have been made at improving the performance of the SOAP protocol by
using a different method for encoding XML. Ng identifies a table driven version of XML
(TDXML) [37] that is more efficient as it provides messages that are more compact in a
simpler structure. Ng found that TDXML can be incorporated into a SOAP
implementation, and has shown that there can be an improvement in performance issues
caused by the latency of XML by as much as 30%. If TDXML is used in place of SOAP,

performance increases of over 100% can be achieved.

2.6  Web Services

Part of the overall Service Oriented Architecture paradigm, web services have
been a common method for communication among systems across the web. As with
other SOA, web services use a variety of technologies to achieve their ultimate goal.

The authors of this paper [38] provide details of the components that make a web

service, with XML being used as the basis. Simple Object Access Protocol [39] is the
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most common protocol used in a web services architecture, which is designed to be a

lightweight XML-based protocol used to transfer data between a client and a server. An
advantage of SOAP is that it is truly a platform independent protocol, and it is human
readable. Figure 2 shows a sample SOAP response from a web service storing a

randomly generated integer.

<spapenv:Envelope xminsxsd="http/www.w3.0rg/2001/XMLSchema’
xmins:soapenv=hitpischemas.xmisoap.org/soap/envelope/” xmins xsi="http 4
www.w3.0rg2001/XMLSchema-instance™ xmins="http=/192.168.1.4.8080/s0aptypes™
<soapenv:Body>
<RandomSintegerResponse>
<result xsitype="Sinteger>
<simplelnteger xsitype="xsd:int>
2031
</simpleinteger>
<fresult>
<RandomSintegerResponse>
</soapenv.Body>
</soapenv:Envelope>

Figure 2 - Example SOAP Response

Part of the overall Service Oriented Architecture paradigm, web services have
been a common method for communication among systems across the web. As with
other SOA, web services use a variety of technologies to achieve their ultimate goal.

Web services use an XML-based language for describing the capabilities of the
service as well as what the service requires for input for it to process the request
correctly. The protocol that is used for transport, endpoints of the web service, as well as
a list of all of the available services at a particular endpoint are all provided by a Web
Services Description Language (WSDL) [40]file, typically hosted by the web service
endpoint. Figure 3 shows a segment of the WSDL file that defines the web services that

produced the SOAP response in Figure 2. Note that the segment identifies two separate
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methods. The first method, RandomSInteger, requires no parameters to be sent, and has

no return. RandomSIntegérResponse provides a result of type Sinteger, which in this

example is a class object containing a single integer value.

- <xsd:element name="RandomSIntcger">
~ <xsd:complexType>
<xsd:sequence> </xsd:sequence>
</xsd:complexType>
</xsd:element>
- <xsd:element name="RandomSIntcgerResponse”™>
— <xsd:complexType>
- <xsd:sequence>
<xsd:element name="result” type="types:Sinteger™i>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

Figure 3 - Example WSDL Function Definition

The final component that the paper [38] identifies as a component of a web
service is the Universal Description, Discovery, and Integration (UDDI) [41] which allow
a web service to be discovered. It is a SOAP-based application interface that allows for
the publishing and discovery of web services.

Using a web service architecture on an embedded device is the topic of a paper
written by Schall, Aiello, and Dustdar [42]. Mobile computing is quickly becoming more
popular and the authors identify issues between éperating systéms and hardware
platforfns used as a basis for smart phones and other such devices. The use of web
services can provide the loosely coupled architecture required for such an environment.

In their paper [42], several toolkits were exampled. gSOAP [10, 11], being a C++
implementation of a web services architecture was compared with several Java toolkits.

Several metrics were examined in the study, such as the average time required to execute

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyyapnw.manaraa.com



35
a request, the latency given for a number of requests to be performed, and the Java

overhead required to support the Java toolkit implementations. The authors found that
the C++ implementation was quicker at creating the request for data, but slower than the
Java toolkits that were examined in providing a response. Overall, however, the C++

implementations outperformed the Java toolkit implementations.
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CHAPTER III

METHODOLOGY

This chapter describes the plan that was adopted for this research in terms of the
work that needed to be completed as well as the approach that was taken. Details of
hardware selection criteria and devices that were examined as potential development

platforms are also explored in this chapter.

3.1 New Contributions

This research contributes to the body of knowledge by implementing a Service
Oriented Architecture [1] on an embedded device [5] using a flexible open source toolset
[43, 44] with the goal of measuring performance of varying encoding mechanisms. Until
now, little research has been conducted on the combination of embedded devices with a
Service Oriented Architecture implementation, specifically with a focus on data encoding
performance. The resulting framework opens the door to intelligent devices that can be
used in the industrial control and sensor network arenas.

The research that was conducted applies web service encoding methods to an
embedded device for the purpose of measuring performance characteristics of the device
as well as the network that is attached. Most prior research compared the performance of
existing protocols on devices that are not resource constrained, such as a desktop or
server system [45-47]. Utilization of these protocols on a resource-constrained device

can show different performance characteristics.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com



37

Another aspect of this research is that it focuses on using objects of varying sizes
and depths containing randomly generated data, unbiased by using any specific data.
An additional aspect is the characteristics that were captured during the experimentation
process which include the following measurements:

* Size of the data transferred across the network using both the Microsoft
.Net Framework and the embedded platform

* Total time to encode and decode an object using the .Net platform

* Total amount of time required for the embedded device to process and
return a response

These measurements allow for an analysis of how varying platforms perform
using web service protocols, as well as a comparison between a desktop computer and an

embedded device implementation.

3.2 Prior Research

A significant amount of background investigation was conducted to capture the
body of research relating to web services in general, how they are applied to embedded
devices such as sensor network nodes, varying protocols and protocol implementations
that exist, as well as high level performance characteristics for several of the commonly
used protocols. In addition, references have been collected for existing web service
frameworks and architectures, including specific implementations of such solutions and

their uses.
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Little research {12] was found that has been focused on web service protocol

system resource utilization or performance considerations of these protocols on
embedded devices. This research is meant to bridge this gap that exists in the current

body of knowledge.

33 Data Structure Selection

A set of sample data structures or objects was required for experimentation that
could be easily generated by the web service architecture of increasing complexity.
Simple objects containing a single layer and variable to objects that were multiple layers
deep were required to best determine how each protocol would perform and cover the
gamut of potential data structure complexities that a solution may require. A total of nine
data structures were chosen that contain integer and/or text values to varying degrees of
complexity. Composite data structures make up several of the measured data structures.

Details of the actual data sets used are described in Appendix A.

3.4  Experimental Approach

Determining the performance between several web service protocols does not
lend itself to an analytical approach. Experiments were conducted on an embedded
plétform in order to accurately determine their performance in such an environment.
Virtualized environments can be created rather than using actual hardware for this
purpose, however virtualization can cause performance variation between hardware due
to the algorithm and pattern choices made during its development. Results can be

difficult to recreate between different virtualization environments for the same reasons.
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Two separate experiments were conducted to determine the performance of web

service protocols. The first experiment was used to determine the performance of the
SOAP protocol, commonly used in web services, as well as other protocols that can be
used for the same purpose. The second experiment determined the performance of these
protocols on an embedded device, validating if web service architectures can be utilized

on such a platform.

3.5 Protocol Selection

Selection of the web service protocols is a key component in this research. The
protocols that were selected are pfotocols that provide the element of human readability.
This, by definition, removes any binary implementations of web service communication
protocols, even though they are able to transfer data at a much higher density without
much overhead.

Creation of a new web service communication protocol is not the intention of this
research. The use of protocols that have been established and used in a web service
environment increase the probability that a client will not require additional or
proprietary software in order to communicate with the new implementation. The key is
that a high performing web service protocol is selected that can be used on an embedded
device without causing the device to fail due to its constrained resource configuration.

The SOAP protocol [39] was included as it is the most commonly used web
service protocol at the creation of this research. It is also XML-based, allowing for this

protocol to be the reference protocol to compare system resource utilization against.
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JavaScript Object Notation (JSON) [36] is selected as it is the other end of the

spectrum when compared with SOAP. JSON does not use XML and does not have the
overhead that SOAP requires.

In between SOAP and JSON is XML [48] over HTTP, which is the final protocol
that was examined. Using XML over HTTP does not require the header information that
SOAP does, however is verbose in its tag formatting like SOAP.

All three of these protocols are capable of encoding a data structure and
transmitting it to the web service client, allowing the analysis of system resource
utilization using varying complexities of objects. These protocols are identified in Table

2 below, indicating which methods use an XML format and which do not.

Table 2 — Web Service Protocols and XML Utilization

Protocols Researched XML Used
SOAP Yes
JSON No
XML over HTTP Yes

3.6 Experiments

As mentioned in earlier sections, multiple experiments were required during the
process of completing this research. The intention of the first experiment was to validate
that a difference in system resource utilization exists between XML-based and non XML-
based w;:b service protocols while the second experiment verified the results found on an
embedded device. A summary of these experiments and their purpose is shown in Table

3.
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Table 3 — Summary Of Experiments

Experiment Number

Purpose

1

Proof of concept, Microsoft .Net measurements

2

Embedded device implementation, measurements

41

3.6.1 Experiment 1

To validate that web service protocol resource utilization is meaningful to
research, an experiment was conducted to measure the resource usage of both the
serialization and deserialization actions on data to be transferred by a web service. Both
the web service host and client are required to convert the data that they receive and send
to the other. Figure 4 shows the process in which the data being passed through a web

service must endure.

Deserialized
Object

Object

Serializer Deserializer

Figure 4 - Serialization/Deserialization Process

The data being transferred through a web service may or may not be a data

structure. A simple value such as an integer could be transferred in its place, therefore
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the term ‘object’ in Figure 4 represents any data that is to be transferred through the web

service.

The data must first be serialized into some format, dictated by the web service
transfer protocol, so that it may be sent to the device receiving the request. The data is
sent in its encoded form across the network medium (local area network, wide area
network, Internet) to the receiving device. The data is then decoded back into its original
format and processed.

Experiment 1 created an environment in which selected data structures will be
populated with random data, serialized, and deserialized. The Microsoft .Net 3.5
Framework was used in a Windows environment for implementation of the experiment as
it supports web service connectivity and two web service protocols, SOAP and JSON.
Microsoft .Net 3.5 has improved the JSON architecture and supports the methods used in
Microsoft .Net 2.0, so both versions of JSON encoding will be utilized. The new
implementation of JSON in the Microsoft framework will be referred to as JSON
Contract throughout this document.

Both the serialization and deserialization timings were recorded, as well as the
total encoded message length. The measurement of data encoding and decoding provides
an estimated time value indicating the length of time required for the system to process
and convert the data that is sent or received. The character length of the encoded
message provided details regarding the size of the network transmission required to send

the message to the destination device.
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3.6.2 Experiment 2

Determining the resource utilization of each protocol on a complete computer
system provides insight into the potential performance on an embedded device, however
as the computer system is not as resource constrained, it is not an accurate model.
Implementing web services on an embedded device will accurately create an environment
in which resource utilization can be captured and then analyzed. The type of embedded
device as well as its available resources can vary, which can lead to repeatability issues.

Existing web service frameworks were examined and compared to make a
determination as to which would be the best fit for the selected embedded device. The
selection of a framework depended on the hardware and operating system configuration
of the embedded device. The development language of the framework also played a

factor, as the embedded device must be capable of supporting it.

< Embedded \ Client

Device
/ Crossover
Cable

Figure 5 - Embedded Device and Client Setup

The embedded device was connected to the client, which will provide a host
application that will perform the testing and capture measurements. A crossover cable

was used between the embedded device and the client to ensure no outside interference or
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latency will be introduced into the system. The cable itself was short to reduce signal

attenuation. Figure 5 demonstrates a model of the physical implementation of the
experiment.

Measurement of transfer time as well as length of data took place on the client.
Adding additional burden to a resource-constrained device, however small it may seem,
can affect the result set. Reducing the amount of load on the embedded device where it
can be performed elsewhere is key to an accurate result set.

The client used the Microsoft .Net 3.5 Framework, however it did not use its
built-in web service communication capabilities. The focus of this experiment is to
measure the system resource utilization on the embedded device, not the web service
client. By creating a method for communicating with the web services hosted on the
embedded device instead of using built-in functionality, the communication process can
be controlled at a lower level than could be possible otherwise. Information not required
by the web service on the embedded can be removed from the web service query in this
way. Submitting data using custom HTTP requests allow.

As measurements were taken on the client and not on the embedded device, the
processing time the embedded device required to service a request cannot be measured
directly. Network latency was calculated by pinging the device with a packet containing
approximately the amount of data expected back from the device divided by two. The
ping protocol will send back the data that had been sent from the ping originator,

therefore the amount of data expected in the reply will have been transferred across the
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network. Operating system and hardware latency cannot be accounted for, however these

will be averaged out through a number of web service queries.

3.7  Data Generation

All data used in both experiments was generated randomly and in a consistent
fashion. The selected data structures are composed of integer and string primitive types
as well as composite objects containing the same. All values generated for a specific data
primitive were created using the same algorithm, per experiment, to ensure anomalies
will not develop due to algorithm differences. Algorithms change between experiments
due to language nuances that prevent the same methodology from being used. The
generated values had consistent character length for both experiments; integers were

comprised of 4 characters while strings contain 10 characters.
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CHAPTER IV

EXPERIMENTAL DESIGN

4.1  Introduction

Determining the performance difference between web service protocols that
execute on a full computer system, and then comparing them with the performance of
those protocols on an embedded device can easily be inconsistent depending on what is
measured. The best way to compare the performance of the protocols themselves, as well
as the performance on each device is by devising two separate experiments. In this way
the performance of the protocols can be examined on both platforms and compared to

identify performance trends and bottlenecks that are apparent on both platforms.

4.1.1 Experiment 1

To determine the system resource utilization of a web service, a baseline
measurement must first take place using a common web service framework. Developing
a new framework from scratch could incorporate performance inefficiencies when
compared to a fully tested infrastructure. For this reason, the Microsoft .Net framework
was used to form the baseline, as it is a common development framework that
incorporates web service capabilities using algorithms that have been tested by Microsoft
as well as the developers that utilize it daily.

Microsoft .Net 3.5 was chosen for the framework as it has the capabilities of using

the SOAP protocol as well as two different formats of JSON. The .Net Framework
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allows for individual components of the full web services solution to be used. This

ability allows for the ability to focus on the protocols themselves.

A common laptop system was used to perform the experiment. The system
configuration included 4GB of memory and a dual core Intel 2.60GHz processor running
Microsoft Vista Ultimate Edition. The system was freshly loaded for this purposes with
services not required for functionality either disabled or stopped.

Using the randomly generated data sets identified previously in this research, the
core processing of a web service was emulated on the local system. For each data set
type, one thousand objects were created, serialized into the selected protocol, and
deserialized. Object size and timing measurements were taken during the process of
serialization and deserialization, and then recorded for later analysis.

Since this experiment required web service functionality, a web-based Visual
Studio project was used. This allowed for a web GUI to be used to kick off the process
for a particular object type using all three available protocols. All data was saved to a
file, and calculated before data was rendered on the web page. Appendix B provides an
example of the ‘dashboard’ used to launch the experiment for a particular data set type.
As shown, a captured representation of one of the objects is shown in its encoded format.

For each object type, the object class being measured is coded and then executed.
The interface did not automate the entire experiment, incorporating all data types being

analyzed.

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyyanwy.manaraa.com



48
4.1.2 Experiment 2

Once data has been collected and analyzed from Experiment 1forming a baseline,
a similar architecture on an embedded device was implemented to compare against. The
embedded device does not support Microsoft Windows, so the .Net Framework is not an

option. Another solution is required for the functionality of this experiment.

4.1.2.1  Hardware Selection

Using an embedded device is the best way to emulate an embedded environment,
and the selection of the device is paramount to the success of the experiment. The device
that is selected must be flexible enough that varying web service architectures can be
implemented and tested while at the same time the resources of the device must be
constrained to fit the characteristics of an embedded device.

Several companies manufacturer embedded devices, and two devices were
selected for examination. Netburmer has several offerings that provide the required
functionality. The Netburmer PK70 [4] was selected as it is resource constrained, yet it is
flexible enough in that it can be programmed using C++. The PK70 has a network
adapter, plenty of expandability and I/O options, a real-time operating system, and plenty
of example code to use. For the purposes of this experiment, however, it does not allow
for rapid prototyping. Everything must be developed from scratch in regards web service
architecture implementation.

The second device that was examined and eventually selected for this experiment
was the Technologic Systems TS-7800 [5]. The TS-7800 embedded device shares

required capabilities with the Netburner PK70 without the complication required to
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develop the whole architecture from scratch. The TS-7800 has a Debian Linux operating

system pre-installed allowing for Linux packages to be easily installed and compiled on
the device. In addition, it provides support for wireless capabilities, plenty of
expandability, and the ability to attach SATA hard drives. Being that it runs Linux, the
device has more memory and storage resources than the Netburner PK70, making it more

flexible. Appendix C shows the top view of the controller board.

4.1.2.2 Web Service Frameworks

The Technologic Systems TS-7800 device, being Linux-based, enables the ability
to use existing web service frameworks instead of building one from scratch. For this
experiment, this is the preferred method. Instead of implementing a framework that may
have performance bottlenecks due to algorithm implementation a well-tested framework
can be used instead.

The XINS framework [49] is an open source Java-based web service framework
which allows rapid prototyping of a web service architecture. Much of the work is done
automatically. Documentation as well as WSDL files are generated automatically during
the process of web service architecture implementation. Figure 7 below identifies the
components of XINS, their interaction, as well as the components that are automatically

generated.
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Figure 6 — XINS Architecture [49]
XINS uses a series of XML files as well as function definition files [50] to define

the web service methods being exposed. Custom types and errors can be defined using
the framework allowing for a high level of customizability.

Another web service framework examined is TGWebServices [51] which extends
TurboGears [43], Python-based web framework. TGWebServices supports commonly
used as well as emerging web service protocols (SOAP, JSON, and XML over HTTP).

Like XINS, custom types can be created for use with the web services.

4.1.2.3 Web Service Framework Selection
Both the XINS and TGWebServices frameworks are capable enough to perform

the experiment, so both implementations were tried on the TS-7800.
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XINS is Java-based, requiring an installation of the Java Development Kit.

Implementations of the JDK exist for Linux however the version of Linux pre-installed
on the TS-7800, a modified version of Debian 3.1, does not have a pre-built package for
its ARM processor type. Building the JDK from source or using an open source
implementation of the JDK is possible, however due to the constrained resources of the
device or creating an environment outside of the device and porting to the device once
ready proved to be a challenge. Updating of the operating system is another option,
however the additional space required further limits the available space on the device.
Once the JDK was installed and the operating system installed, the available space on the
TS-7800 NAND was extremely low with 1MB free. This makes XINS an impractical
implementation for an embedded implementation on such a device without additional
storage made available or further modification of the core operating system.

TGWebServices and TurboGears both require Python to be installed, which
Debian 3.1 does have an implementation of. The operating system on the TS-7800 was
upgraded to Debian 4.0 to allow the use of Python 2.5, the recommended version for
TurboGears and TGWebServices. The installation of TGWebServices, TurboGears, and
its required packages was straight forward using the easy install command. After
installation was completed, the free space on the TS-7800 NAND would allow for further
development and applications to be installed.

TGWebServices with TurboGears was selected for this experiment for more
reasons than installation difficulty. Since Python does not require compilation like Java,

it would be possible to dynamically add web service capability while the application is
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running. TurboGears will automatically restart itself when it detects a code change,

reducing the user overhead in maintaining the infrastructure. Figure 6 below shows the
complete architecture of the device. Note that hardware interaction, as demonstrated in

Figure 6, can be achieved by writing extension modules to Python.

4 )
Embedded Device

(" TurboGears Web Services Hardware )

J GWebServices | | Implementation Interaction )

4 )
Operating System

\ J

s ™

Linux Kernel

Figure 7 — Web Service Architecture Block Diagram

Another significant advantage is that adding custom libraries, providing the
ability to perform whatever additional functionality is needed, can easily extend Python.

In this way, access to hardware or other low-level functionality is made available for use.

4.1.2.4  Experiment Execution
Due to the nature of the experiment, careful planning was required to ensure that
"~ as many variables could be removed as possible. As explained in Chapter 3, an
environment was estat;lished in which the TS-7800 was directly attached to a computer
system. The client system was a laptop running Microsoft Windows Vista Ultimate with

4GB of RAM and an Intel Core 2 Duo 2.0GHz processor. Software applications and
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services not required for system functionality were stopped or disabled to remove

possible bottlenecks from the client system.

The TS-7800 environment was also cleaned in a similar fashion. Default services
that were installed from the factory such as MySQL and Apache2 were removed or
disabled for the execution of the experiment. No swap was enabled on the embedded
device; therefore all execution took place in memory, further emulating a more
constrained embedded device.

All data collected is stored on the client system, as well as all measurements that
take place to remove additional system resource-consuming services and applications that
may adversely affect the embedded device. To perform the measurements, an interface
was created to act as a control console to perform experiment execution and data
collection.

For each data set type, one thousand objects were requested from the client using
an HTTP GET request. The TS-7800 would then create the object, populate it with
random data, and send it back to the client. The client would measure the amount of time
taken from the time the request was submitted to when the data was received, and
subtract the average ping response time to the TS-7800. The ping time was calculated by
first querying the TS-7800 to receive an object of which the size is measured. The
character length of the returned object divided in half is then sent to the TS-7800 using
ping, and the time required for the response to be received is averaged together and

subtracted from each request.
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The transmission time as well as the character length of the returned object was

collected by the client system measure the performance of the protocols used. The data
collected is similar to that collected by Experiment 1, allowing a comparison between the

two for similar as well as different protocols.
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CHAPTER V

ANALYSIS OF RESULTS

5.1 Validation

Several trial runs were performed during the development of the testing code
using varying environments. During the execution, few problems were found with
logging of the result data. Using Microsoft Excel, captured data was compared between
the experiments and similar trends were identified. The standard deviation from the

measurements is small, indicating few outliers exist in the data.

5.2 Results

The following sections provide tables and graphs showing the collected data in a
graphical format. Because there are a large number of measured values between the two
experiments, three groups of data will be shown. The first group of tables and graphs
will show the performance timings of the protocols for both Experiment 1 and
Experiment 2 separately. The second group will compare the resulting character size for
each serialized object for both Experiment 1 and Experiment 2. The graphs in the second
group will show little difference between implementations used. The final group will

illustrate the true performance of each data type object tested during Experiment 2 by
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showing the average amount of time required to process each raw data character being

encoded.

5.2.1 Protocol Analysis

The data represented in Figure 8 and Figure 9 show the average amount of time
required to serialize and deserialize each data structure selected for Experiment 1. The
act of serialization takes an object or value and encodes it into a format that is suitable for
web services to send the data. Deserialization reverses this process. Note that in all cases
SOAP required more CPU time to perform its function than either JSON implementation

provided by the Microsoft .Net framework.

=——SOAP ~—#—]SON =—#—]SON Contract

10 9~

0.1 —_—
0.01 = —
Complexw/ Complexwo/ Simple (Intand Simple (Str)  Simple (Int)
Array Array Str)

Average Serialization Timings (Milliseconds)

Figure 8 — Experiment 1 Average Serialization Time (Milliseconds) Per Data Set Type
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~4—S0AP =#~]SON =-&-]SON Contract

Co0000000
ORNWAENON0 O

) : - :
== -
Complexw/ Complexwo/ Simple (Intand Simple (Str) Simple (Int)
Array Array Str)

Average Deserialization Timings (Milliseconds)

Figure 9 — Experiment 1 Average Deserialization Time (Milliseconds) Per Data Set Type

To further illustrate the performance of each encoding method, the following
figures compare the time required to serialize and deserialize each data object type using
a given encoding method.

Figures 10 and 11 show the average amount of time required to serialize and
deserialize the tested data type objects respectively. Note that as the data object becomes
more complicated, more time is required to encode or decode. This is to be expected, as

more data would generally require more processing time.
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® Complex w/ Array ®Complex wo/ Array ®Simple (Int and Str)
B Simple (Str) B Simple (Int)

12.00269396

17080073 094834888 091644692 0.81502412

SOAP Average Serialization Times (Milliseconds)

Figure 10 - Experiment 1 Average SOAP Serialization Time Per Data Set Type

® Complex w/ Array ®Complex wo/ Array M Simple (Int and Str)
R Simple (Str) 8 Simple (Int)

0.84132428

0.27244692 18504446 017358486  0.16589906

SOAP Average Deserialization Times (Milliseconds)

Figure 11 — Experiment 1 Average SOAP Deserialization Time Per Data Set Type

The data represented in Figure 12 and Figure 13 show average processor
processing time to encode or decode each data object type using the JSON protocol using

the implementation introduced in the Microsoft .Net 2.0 Framework. Note that the
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amount of time to serialize the smallest of the data types is longer than SOAP required.

The trend of larger objects requiring additional processing time is otherwise represented.

B Complex w/ Array ®Complex wo/ Array ®Simple (Int and Str)
B Simple (Str) 8 Simple (Int)

0.09062478

0.03309544

0.01573876 0.0108186 0.0142465

JSON Average Serialization Times (Milliseconds)

Figure 12 - Experiment 1 Average JSON Serialization Time Per Data Set Type

B Complex w/ Array M Complex wo/ Array B Simple (Int and Str)
B Simple (Str) N Simple (Int)

0.70418658

0.1002888

0.04301276  0.02477946  0.02216468

JSON Average Deserialization Times (Milliseconds)

Figure 13 - Experiment 1 Average JSON Deserialization Time Per Data Set Type

Figures 14 and 15 provide a comparison of the CPU time required to serialize and
deserialize a data object type using JSON Contract, a method of JSON introduced in the

Microsoft .Net 3.5 Framework. As with the method of serialization provided by
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Microsoft .Net 2.0, the smallest data type object takes slightly more processing time for

serialization, however the same is seen in regard to deserialization.

¥ Complex w/ Array M Complex wo/ Array ®Simple (Int and Str)
® Simple (Str) B Simple (Int)

0.068709

0.01808958 001369296 (01115308 0.01177312

JSON Contract Average Serialization Times (Milliseconds)

Figure 14 - Experiment 1 Average JSON Contract Serialization Time Per Data Set Type

®Complex w/ Array B Complex wo/ Array BSimple (Int and Str)
B Simple (Str) & Simple (Int)

0.17952474

0.06347212
0.04435576  0.04052764  0.04110832

JSON Contract Average Deserialization Times (Milliseconds)

Figure 15 - Experiment 1 Average JSON Contract Deserialization Time Per Data Set Type

The data shown in Figures 16 and 17 identify the average time to serialize or
deserialize a data object containing an integer primitive type. Note the significantly large

delta in processor time used to serialize the object between either version of JSON and
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SOAP. The deserialization process does not indicate as large of a difference, however

JSON still outperforms SOAP.

ESOAP ®JSON ™]JSON Contract

0.81502412

0.0142465 0.01177312

Simple (Int) Average Serialization Timings (Milliseconds)

Figure 16 — Experiment 1 Simple Integer Average Serialization Time Per Protocol

B SOAP ®|SON #S]JSON Contract

0.16589906

0.04110832

0.02216468

Simple (Integer) Average Deserialization Timings (Milliseconds)

Figure 17 - Experiment 1 Simple Integer Average Deserialization Time Per Protocol

A similar trend can be identified in Figures 18 and 19 using a data object

containing a string of characters. JSON significantly outperforms SOAP in both the
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serialization and deserialization processes, however the performance difference is not as

significant during the deserialization of the object.

B SOAP EJSON ®JSON Contract

0.91644692

0.0108186 0.01115308

Simple (String) Average Serialization Timings (Milliseconds)

Figure 18 - Experiment 1 Simple String Average Serialization Time Per Protocol

ESOAP MJSON ®]SON Contract

0.17358486

0.04052764

0.02477946

Simple (String) Average Deserialization Timings (Milliseconds)

Figure 19 - Experiment 1 Simple String Average Deserialization Time Per Protocol

The performance trend can still be identified with data objects containing an

integer and string, as shown in Figure 20 and Figure 21. The deserialization process
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performance difference, while still significant, is decreasing as the object becomes more

complicated.

®SOAP BJSON ®]SON Contract
0.94834888

0.01573876 0.01369296

Simple (Integer and String) Average Serialization Timings
(Milliseconds)

Figure 20 - Experiment 1 Simple Integer with String Average Serialization Time Per Protocol

ESOAP ®JSON ®JSON Contract

0.18504446

0.04301276 0.04435576

Simple (Integer and String) Average Deserialization Timings
(Milliseconds)

Figure 21 - Experiment 1 Simple Integer with String Average Deserialization Time Per Protocol
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Figures 22 and 23 show the average time to serialize and deserialize a complex
data object containing an integer primitive type, a string value, and a composite object
containing an integer primitive and string value. The serialization process still shows a
large difference in performance between SOAP and either version of JSON, however the

deserialization process indicates a difference between the versions of JSON used.

ESOAP ®JSON ™JSON Contract

1.7080073

0.03309544 0.01808958

Complex wo/ String Array Serialization Timings {Milliseconds)

Figure 22 - Experiment 1 Complex Object without Array Average Serialization Time Per Protocol

B SOAP H]SON ®]JSON Contract

0.27244692

0.1002888
0.06347212

Complex wo/ String Array Deserialization Timings (Milliseconds)

Figure 23 - Experiment 1 Complex Object without Array Average Deserialization Time Per Protocol
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The performance for serializing and deserializing the most complex data object
tested in Experiment 1 is shown in Figures 24 and 25 respectively. The data object
measured in this test is made more complex than the object used in the previous test by
including a string array containing 50 values. Serialization still shows a significant
performance difference, while the deserialization of the object shows a greater delta in

performance between the versions of JSON used.

8 SOAP ®]SON M™]JSON Contract

12.00269396

0.09062478 0.068709

Complex w/ String Array Average Serialization Timings (Milliseconds)

Figure 24 - Experiment 1 Complex Object with Array Average Serialization Time Per Protocol
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ESOAP HJSON ™]SON Contract

0.84132428

0.70418658

0.17952474

Complex w/ String Array Average Deserialization Times (Milliseconds)

Figure 25 - Experiment 1 Complex Object with Array Average Deserialization Time Per Protocol

The following graphs show data collected for the data type objects selected for
use in Experiment 2. Note that Experiment 2 utilized TurboGears and the
TGWebServices add-on libraries as a base for the web service architecture that was used.

More data than the serialization and deserialization of the data type was collected
from Experiment 2. Also captured was the time required for the entire web service to
execute to completion, providing a more realistic measurement of the processing required
to handle each request.

Figure 26 shows the amount of time required to process a data object type similar
to that used in Experiment 1. Note the performance delta between JSON and SOAP does
not show as large of a delta. XML over HTTP shows an improvement over SOAP, but

appears not as efficient as JSON.
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Figure 26 — Experiment 2 Integer Object Average Round Trip Time

Figure 27 shows the average processing time for a web service request returning a
data object containing a string. Again, XML over HTTP shows an improvement over

SOAP, but is close to the performance of JSON.
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Figure 27 — Experiment 2 String Object Average Round Trip Time
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A data type object containing both an integer and string was created and tested,
similar to that used in Experiment 1. The average time of processing is shown in Figure
28. The same trend is shown as with previous objects, however the time required to
process an object containing only a string is larger than processing an object with a string

and an integer value.

10 - 9.459171429
8 -
—_ 6.292371429
g 6 - - 5.476714286
s ,
E 4
b=
2 A i .
0 j T I T ]
JSON SOAP XML over HTTP
Integer and String Object

Figure 28 — Experiment 2 Integer and String Object Average Round Trip Time

Figure 29 identifies the average processing time for processing a complex data
type object, similar in design as the data type object used in Experiment 1. The same

trend can be identified with this object.
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Figure 29 — Experiment 2 Complex Object Average Round Trip Time

Adding an array of 50 strings to the complex object better shows the processing
time differences between the encoding mechanisms. While each shows an increase in
processing time in Figure 30, those based on XML show a larger decrease in
performance. XML over HTTP is also more clearly performing better than SOAP but not

as well as JSON.
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Figure 30 — Experiment 2 Complex Object w/ Array Average Round Trip Time

The remaining data type objects are made of the complex data type objects
including an array, however they are composite objects of a defined depth. Figure 31
shows the performance characteristics of the data type objects with a depth of 5 layers.

XML over HTTP becomes closer in performance to SOAP than JSON.

1 A 0.914292803
0.8 - 0.70715863
E 06 1
]
E 04 1 0327257273
0.2 1
0 -
SOAP XML over HTTP JSON
Complex Object w/ Array R5

Figure 31 - Experiment 2 Complex Object w/ Array RS Average Round Trip Time
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The same trend can be seen in Figure 32 with a depth of 10 objects as with a

depth of 5 objects.

0.9 0.830800265
0.7 - 0.645242992
0.6 R
0.5 -
0.4 1 0.289680985
0.2 - ‘
0.1 i |

Time (ms)

SOAP XML over HTTP JSON
Complex Object w/ Array R10

Figure 32 - Experiment 2 Complex Object w/ Array R10 Average Round Trip Time

A depth of 20 shows a performance roughly double that as a depth of 10 in Figure

33.
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0.2 -
0.1 -

0.633489811

Time (ms)
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SOAP XML over HTTP JSON

Complex Object w/ Array R20

Figure 33 - Experiment 2 Complex Object w/ Array R20 Average Round Trip Time

The last object tested in Experiment 2 is of a data type object 40 layers in depth,
performance characteristics shown in Figure 34. The same trend is carried through to this

object. JSON still outperforms SOAP and XML over HTTP significantly.

09 1 0.822452462
0.8
0.7 A
0.6 7
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0.3 1
0.2 A
0.1 -

0.653834489

Time (ms)
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SOAP XML over HTTP JSON

Complex Object w/ Array R40

Figure 34 - Experiment 2 Complex Object w/ Array R40 Average Round Trip Time
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5.2.2 Serialized Object Size Analysis
The performance of each encoding mechanism must take into account more than
CPU processing time. Network bandwidth usage must also be considered. To take this
factor into account, the size of the serialized object is examined between the encoding
mechanisms to identify which protocols utilize available bandwidth more efficiently.
Figure 35 shows the number of characters required to represent the data object
using either SOAP or JSON for Experiment 1. Note the number of characters is

substantially larger when using SOAP versus the JSON encoding mechanism.

MSOAP WJSON (General)

3050

1083

737 700 685
. 123 . 50 . 29 - 22

Complex w/ Complexwo/ Simple (Intand  Simple (Str) Simple (Int)
Array Array Str)
Total Serialized Characters

Figure 35 — Experiment 1 Total Serialized Characters Comparison — SOAP and JSON

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyyanwy.manaraa.com



74

The following figures show the character size of the protocols used in Experiment
2 for a data type containing a simple integer primitive. Note that SOAP requires more

characters to represent the same data.

450 1 426

400 A
350 -
300 A
250 A
200 A
150 A
100 f
50 A

0 -t

Number of Characters

>z 35

SOAP XML over HTTP JSON

Integer Object

Figure 36 — Experiment 2 Integer Object Response Result Characters Per Protocol

The same trend can be seen in Figure 37 for a data type object containing a string

value.
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Figure 37 - Experiment 2 String Object Response Result Characters Per Protocol

Again, the trend stays the same with a data type object containing both a string

and an integer value as shown in Figure 38.
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Figure 38 - Experiment 2 Integer and String Object Response Result Characters Per Protocol
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A complex data type object requires more characters, and is the first data type in

which JSON shows a significant character difference over XML over HTTP in Figure 39.
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Figure 39 - Experiment 2 Complex Object Response Result Characters Per Protocol

Figure 40 shows what adding arrays to the data type objects can do to increase the
character representation of the serialized objects. The trend is more pronounced. SOAP
requires significantly more characters than XML over HTTP, with JSON requiring the

fewest.
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Figure 40 - Experiment 2 Complex Object w/ Array Response Result Characters Per Protocol

Objects of increasing depth indicate the same trend as less complex data types.
Figure 41 shows the number of characters required to represent a data type object of 5

levels deep.
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Figure 41 - Experiment 2 Complex Object w/ Array Response Result Characters Per Protocol

Figure 42 shows the number of characters required to represent an object 10

levels deep.
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Figure 42 - Experiment 2 Complex Object w/ Array R10 Response Result Characters Per Protocol
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A data type object of 20 levels deep is represented in Figure 43. The same

identified trend continues as the object depth becomes greater.
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Figure 43 - Experiment 2 Complex Object w/ Array R20 Response Result Characters Per Protocol

The most complex object tested in Experiment 2, an object 40 layers deep, still
shows the same characteristics as the complex object did. JSON is clearly the better

performing encoding mechanism.
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Figure 44 - Experiment 2 Complex Object w/ Array R40 Response Result Characters Per Protocol

5.2.3 Protocol Performance

The sections above clearly show that JSON performs better in both processor time
required to process the request as well as the number of characters required to represent
the data type object in a format compatible with a web service. Comparing the time
required to process the raw data object can identify the actual efficiency of the encoding
method. Performing a time comparison of the output characters is not meaningful due to
the nature of the encoding methods. For example, both SOAP and XML over HTTP
utilize descriptive opening and closing tags, increasing the number of characters
significantly when compared to JSON. Table 1 showed the amount of overhead required

for each protocol. The substantial addition of characters in these encoding methods
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skews the numbers and is not an accurate method for measuring performance of the

method.
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Figure 45 — Integer Object Average Processing Time Per Raw Data Character
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Figure 46 — String Object Average Processing Time Per Raw Data Character
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Figures 45 and 45 above illustrate the performance of each protocol examined in
Experiment 2 for the most simplistic data type objects examined. Note that JSON does
perform better than the XML-based encoding methods that were examined, however the
difference is negligible when compared to XML over HTTP. Of the encoding methods
examined, SOAP performed the worst due to additional processing required for
formatting. XML over HTTP does not require the additional header information that
SOAP requires.

As shown in Figure 48, this trend continues, although the performance of JSON is
shown to increase with more complicated data type objects. Adding additional data, an
array of significant size as shown in Figure 49, shows that JSON performs even better
than the XML-based protocols. All of the encoding methods appear to perform better
due to the number of characters added to the data object by the array as shown by the

average time per character processing.
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Figure 47 — Complex Object Average Processing Time Per Raw Data Character
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Figure 48 — Complex Object w/ Array Average Processing Time Per Raw Data Character

Figures 50 and 51 illustrate the performance per character of raw data for the
largest data type objects tested in Experiment 2. The performance of JSON far exceeds

that of the other encoding methods tested. Note that the data type object of 40 recursive
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objects performs better than that of 5 recursive objects. This is seen due to the number of

characters of raw data being encoded.
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Figure 49 — Complex Object w/ Array R5 Average Processing Time Per Raw Data Character
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Figure 50 — Complex Object w/ Array R40 Average Processing Time Per Raw Data Character
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5.3  Overall Analysis

Recall that two different resource utilization factors are being considered in the
analysis. First, the processing time required for encoding and decoding the message
being transferred through the web medium and secondly the used network bandwidth,
measured by the number of response characters from the web service. Several web
service protocols were used and measured throughout the experiments, some of these
XML-based.

Examining Figure 8 and Figure 9, it is shown that in Experiment 1, either version
of JSON demonstrated the use of fewer system resources needed for encoding or
decoding an object. Figure 36 identifies the number of characters required to represent
the response data in a particular algorithm. Notice that JSON required a significantly
smaller number of characters to represent the same data.

Similar results were identified in Experiment 2. An additional protocol was
introduced, XML over HTTP, to provide another XML-based protocol for comparison.

Results will now be broken down by measurement type. Following will be some
analysis of the individual measurements and attempt to determine what factors affect the

péi’formance of each protocol.

5.4  Analysis By Processing Time
The encoding and decoding time can stress the resources of an embedded device

significantly. The processor and memory allocations given to such a device are
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constrained to a degree that algorithms requiring a large number of CPU cycles or a
significant amount of memory can cause the device to fail in its core function. Web
services can use a number of transmission protocols, and finding one that is efficient on
an embedded device can assist with reducing the system resource utilization overall for
the device.

Two separate experiments were conducted, one to verify the idea that a significant
performance difference can be seen on a full-featured computer system, and the second to
implement a web services architecture on an embedded device and measure the
performance of several protocols. This data would then be compared with the data
collected in Experiment 1, acting as a baseline, to verify the performance on such a
device.

Figures 8 and 9 identify the processing performance characteristics of
serialization and deserialization of the five data set types being examined. Experiment 1
focused on the performance of a particular web service protocol in the Microsoft .Net
environment. These two figures show that more complex objects require more
processing time than those that are less complicated.

Figures 10 and 11 show the impact of serialization and deserialization of the data
set types using SOAP, providing the average of the measured values for comparison.

Again note how the more complicated the object, the more processing time is required to
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encode or decode. In addition, a trend can be seen that the amount of time required to
serialize the data is much more significant than deserialization.

The JSON protocol, as shown in Figures 12 and 13, demonstrate the same trend.
The more complicated the data structure, the longer it takes to process. When compared
with the average SOAP timings per object, SOAP requires a significantly large amount of
time. In converting the smallest data structure, one that contains an integer value as its
only data type, JSON is capable of serializing the object 57 times faster than using
SOAP. The most complication object, in this case a complex object with a 50-element
array, the delta increases significantly with JSON serializing 132.4 times faster than
SOAP.

Deserialization does not show the same trend. JSON is faster deserializing the
smallest object by a magnitude of 7.5, however the largest object tested shows a much
smaller performance difference at a magnitude of 1.19.

JSON Contract, the newer method that Microsoft implemented in their framework
for handling JSON communication, performs better than the old implementation when
examining the ability to serialize an object, as shown in Figures 14 and 15. The ability to
deserialize an object using this method is slower with smaller objects. Larger objects
show a decrease in deserialization time.

Figures 16 through 25 provide a view of serialization and deserialization

performance per data set type. Note that each object demonstrates the same trends.
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JSON performs better in both serialization and deserialization than SOAP, however the
deserialization process does not show as much CPU utilization delta as the serialization
process does.

Experiment 2 repeats the process followed in Experiment 1 with a few exceptions.
Data 1s being transferred across a limited network infrastructure; therefore system and
network latency is included in the calculated values. More importantly, the web service
architecture is installed on an embedded device.

Each figure provides the average time required to transfer the request to the
embedded device, deserialize the data, processes the received data, serialize the response,
and send the response back to the client system. Network transfer time is accounted for
by calculating the amount of time required to send a ping packet of equal or larger size,
divided by two as the same data is sent on the return of the packet.

Figures 26 through 34 show the average time required to process a particular data
type object using SOAP, XML over HTTP, and JSON. JSON performs better than both
SOAP and XML over HTTP in all cases, however as the objects become larger, the
performance delta between JSON and the other encoding schemes increase. Figure 26
shows the average time difference between JSON and XML over HTTP being low at a
magnitude of 1.07, while the largest object not containing recursive objects shows a

magnitude of 1.78. Once a data object using recursive objects is introduced, this changes
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to a magnitude of 2.16. The most deeply recursive data object shows a difference

between JSON and XML over HTTP of a magnitude of 2.51.

5.5  Analysis By Character Size

The most critical aspect of a web service that affects a network is the amount of
data that must be transferred from client to server and back. Compounded by the number
of requests, a network can quickly become saturated with traffic slowing down all
transfers. Reducing the amount of traffic across the network is important in preventing
network failures due to congestion.

The character sizes for the serialized data type objects are shown in Figure 36 for
both SOAP and JSON. No difference in character size between both implementations of
JSON in the Microsoft .Net Framework was observed.

Figure 35 shows JSON being capable of encoding data in a much smaller package
than SOAP is capable of. For example, a data object containing an integer primitive type
containing a four-digit value encoded with JSON is represented using 22 characters,
while a SOAP representation of an object instantiated from the same class requires 685
characters. In this case, the character reduction is a magnitude of 31.14, showing a
signiﬁ-cant improvement. The largest data type used in Experiment 1 shows an
improvement of 3.84 in magnitude. The larger the object is, more characters are required

for representation.
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Data collected in Experiment 2 is shown in Figures 36 through 44. An expanded
set of data objects was used, as well as an additional protocol. The delta of characters
required to represent an object is decreased as the object becomes larger in size. XML
over HTTP resides between SOAP and JSON in all cases.

A difference is seen in the size of objects between Experiment 1 and 2, caused by
the implementations of the SOAP and JSON protocols used in each case. The web
services architecture used on the embedded device wraps responses within a response tag
as part of its error handling mechanism, to ensure the client is able to process the return
message. While the response received may not be as expected, the client can determine
that it did receive a response from the web service and process the received error message
accordingly. The difference between the SOAP and XML over HTTP character size can
be attributed to the header information within the SOAP message. This header can be
formatted with varying options, which can increase or decrease its size. The embedded
device uses a more simplistic SOAP header, accounting for much of the character size

difference between the two experiments.

5.6  Proof Criteria Completion
To determine that the research has been completed, several proof criteria have

been defined. For convenience, these criteria are listed below:
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* The selected encoding methods from both experiments show a trend
indicating that methods not using XML require less processing time for
each data object type.

* The selected encoding methods from both experiments show that methods
not using XML require less network bandwidth for each data object type.

* The selected encoding methods implemented on an embedded device,
which do not use XML, indicate higher performance per character input.

Table 4 represents the number of milliseconds required to encode and decode
each of the tested data object types in Experiment 1 using SOAP. When compared with
the values in Tables 5 and 6 representing the time required to encode and decode each
data object type in Experiment 1 using differing versions of JSON, it is clear that JSON

encodes and decodes using less time than SOAP.

Table 4 — Experiment 1 SOAP Summary

Average Serialization Average Deserialization Output
Object Type (Milliseconds) (Milliseconds) Characters
Complex w/ Array 12.00013502 0.837155337 3050
Complex w/o Array 1.704639839 0.271917447 1083
Simple (Int and Str) 0.938253166 0.18467602 737
Simple (Str) 0.908111497 0.172314372 700
Simple (Int) 0.806270995 0.165810935 685
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Average Serialization Average Deserialization Output
Object Type (Milliseconds) (Milliseconds) Characters
Complex w/ Array 0.090605355 0.704883773 795
Complex w/o Array 0.03300914 0.100295994 123
Simple (Int and Str) 0.01562418 0.042960479 50
Simple (Str) 0.010695108 0.024706664 29
Simple (Int) 0.014148983 0.022093739 22
Table 6 — Experiment 1 JSON Contract Summary
Average Serialization Average Deserialization Characters
Object Type (Milliseconds) (Milliseconds) To Send
Complex w/ Array 0.068785003 0.179703326 795
Complex w/o Array 0.016200927 0.063464241 123
Simple (Int and Str) 0.012336989 0.044223644 50
Simple (Str) 0.009486394 0.040443661 29
Simple (Int) 0.010529954 0.041021911 22

Similar results can be seen in Tables 7 through 15 which summarize the data from

Experiment 2, providing mean averages of the time to process a specific data type object

as well as its mean average per source character encoded. The processing time for each

object starts after the client application submits the request for the data type object to the

embedded device and ends once the object has been received.

Table 7 — Experiment 2 Integer Object Summary

SOAP XML over HTTP JSON
Result Character Size 426 52 35
Data Character Size 4 4 4
Avg Time Per Object (ms) 123.162 81.6504 75.9876
Avg Time Per Data Char (ms) 30.7905 20.4126 18.9969
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SOAP XML over HTTP JSON
Result Character Size 430 56 42
Data Character Size 10 10 10
Avg Time Per Object (ms) 126.9684 83.8978 78.5148
Avg Time Per Data Char (ms) 12.69684 8.38978 7.85148
Table 9 — Experiment 2 Integer and String Object Summary
SOAP XML over HTTP JSON
Result Character Size 502 91 65
Data Character Size 14 14 14
Avg Time Per Object (ms) 132.4284 88.0932 76.674
Avg Time Per Data Char (ms) | 9.459171429 6.292371429 5.476714286

Table 10 — Experiment 2 Complex Object Summary

SOAP XML over HTTP JSON
Result Character Size 673 196 137
Data Character Size 28 28 28
Avg Time Per Object (ms) 150.7896 101.244 84.8796

Avg Time Per Data Char (ms)

5.385342857

3.615857143

3.031414286

Table 11 - Experiment 2 Complex Object With Array Summary

SOAP XML over HTTP JSON
Result Character Size 3012 1385 860
Data Character Size 528 528 528
Avg Time Per Object (ms) 517.4832 379.5792 213.0492
Avg Time Per Data Char (ms) | 0.980081818 0.7189 0.403502273
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SOAP XML over HTTP JSON

Result Character Size 15580 7950 4863

Data Character Size 2640 2640 2640
Avg Time Per Object (ms) 2413.733 1866.8988 863.9592

Avg Time Per Data Char (ms)

0.914292803

0.707158636

0.327257273

Table 13 - Experiment 2 Complex Object With Array R10 Summary

SOAP XML over HTTP JSON

Result Character Size 28294 14620 8938

Data Character Size 5280 5280 5280
Avg Time Per Object (ms) 4386.6254 3406.883 1529.5156

Avg Time Per Data Char (ms)

0.830800265

0.645242992

0.289680985

Table 14 - Experiment 2 Complex Object With Array R20 Summary

SOAP XML over HTTP JSON

Result Character Size 53724 27960 17088

Data Character Size 10560 10560 10560
Avg Time Per Object (ms) 8492.6686 6689.6524 2813.849

Avg Time Per Data Char (ms)

0.804229981

0.633489811

0.266462973

Table 15 - Experiment 2 Complex Object With Array R40 Summary

SOAP XML over HTTP JSON

Result Character Size 104584 54640 33388

Data Character Size 21120 21120 21120
Avg Time Per Object (ms) 17370.196 13808.9844 5503.1496

Avg Time Per Data Char (ms)

0.822452462

0.653834489

0.260565795

As shown by these tables, JSON outperforms XML over HTTP and SOAP in

every case, both in the resulting character size and mean average to process each data
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type object. The mean time per data character within the data type object indicates that
JSON is higher performing as well.

The summarized data indicates that all proof criteria have been satisfied. JSON
outperforms SOAP in every case in both network bandwidth required to represent the
object and in processing time, as well as being an encoding method that does not

formatted using XML.

5.7 Rejection Of Null Hypothesis

The null hypothesis for this research was stated above as:

Hy: Web services using an XML-based protocol would see the same or higher
system resource utilization by using a transmission protocol that is not XML-based.

The results of the experimental research demonstrate that the null hypothesis is

rejected for all combinations of data types and web service encodings that were tested.

5.8  Acceptance Of Alternative Hypothesis
Based on the rejection of the null hypothesis for all combinations of data types
and encodings evaluated in this research, the following alternative hypothesis is accepted:
Ha: Web services can reduce system resource utilization by using a transmission

protocol that is not XML-based.
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5.9  Other Observations
The following observations have been identified during the course of this

research.

5.9.1 Embedded Web Service

Web services on embedded devices has been implemented using gSOAP [12],
however it is not a flexible implementation. All code is written in C++ which requires
code compilation outside the device, or if the device hosts an operating system, on the
device.

With the web services architecture developed within Experiment 2, a web service
architecture can be implemented providing dynamic customization of web services with
little downtime on the device. The user, not requiring a set of development tools and
significant downtime for development, can use such a feature to create a web-enabled

device that is completely customizable.

5.9.2 XML In Web Services

Both Experiments 1 and 2 show better performing protocols exist that can be
supported on both a full computer system as well as an embedded device. The key
difference between the protocols is the use of XML as the base. JSON does not use
XML, which can be wordy with the formal but self-describing opening and closing tags.

While beneficial for reading the document, it does decrease performance.
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This can be verified in Experiment 2 as JSON performed better than both XML
over HTTP and SOAP. XML over HTTP does not use as large of a header as SOAP, but
the verbosity of the tags and the mechanisms for processing an XML document shows an

evident performance impact.

5.10 Summary

Service Oriented Architecture technologies are powerful tools, allowing
organizations to develop scalable and flexible solutions for their environments. In the
industrial controls world, however, such technology breakthroughs are non-existent. In
these cases, proprietary software and application programming interface (API) are
required to manipulate these devices, which can be different from device to device.

Concern exists regarding the performance of the encoding mechanisms that are
used in web service environments, namely because of the use of XML. While XML
allows for the creation of a human-readable message, the overhead involved with the
formatting increases the network traffic as well as the processing time due to the methods
that exist to validate XML.

This research proves there are moré efficient encoding methods that could be used
with Service Oriented Architectures as a mainstream transmission method. It also shows
that flexible web service frameworks can be used on an embedded device using a variety
of encoding mechanisms providing a universal communication method with these

devices.
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The use of the JSON encoding mechanism in this research demonstrated it was
higher performing than XML-based encoding mechanisms in use as transmission
methods for web services. This observation was seen in all test cases examined
throughout the course of this research. The delta between performance of each encoding
method varied significantly from over one and a half times to several hundred times in
specific cases. More importantly, it has been shown a web service architecture can be

implemented on a resource-constrained device.
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CHAPTER VI

CONCLUSIONS
This chapter provides a high-level summary of the results as well as a discussion
identifying an example where the resulting research can be used in a system as well act as

an enabler for intelligent systems.

6.1 Results

Service Oriented Architectures (SOA) are powerful constructs that can lead to
complex distributed systems using common communication mechanisms, which is
lacking in industrial embedded applications. The ability for industrial devices to be able
to talk to each other using a common transmission can reduce incompatibility between
products, the amount of time to implement solutions using embedded industrial devices,
and simplify troubleshooting of communication issues. This research provides the basis
to develop solutions that can use a consistent communication method, which is already
used in other industries.

Several encoding mechanisms that are traditionally used with embedded devices
were analyzed in this research with the goal of discovering which of these methods
performs the best on an embedded device. Embedded devices have fewer resources

available to them when compared to a full computing system, therefore the characteristics
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of the encoding method can prove to be significantly different when executed in the new
environment. This research validates this is not the case with the mechanisms that were
tested (SOAP, XML over HTTP, and JSON) as the performance of each method scales to
the embedded device used for experimentation. In all tested cases, JSON outperformed
SOAP and XML over HTTP in both the network bandwidth required to transmit data as

well as the amount of time to encode, transmit, and decode the data.

6.2  Significance

This research illustrates that building an industrial control, which uses a web
service communication mechanism, is feasible for environments where a consistent
communication method is advantageous. Web service architectures not only allow the
devices to communicate with each other, but will allow any computing device to
communicate with them as well. Industrial controls will finally be able to communicate
using the same methods that distributed applications use in the Enterprise. When
partnered with more capable devices, the devices can make intelligent decisions based on
input from other intelligent devices on the network. Currently, this has not been done in
the industrial control industry and will significantly increase the capabilities of the
devices used in industrial environments.

Imagine an industrial environment using products from varying vendors creating a
unified solution in which every device is able to talk to each other using the same

communication technologies. A device that monitors the level of fluid in a tank can
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communicate with a device that controls a pump that feeds the tank. Another device,
which uses the fluid in the tank, can talk to the tank controller as well as other industrial
devices to predict how many more products it can create before running out of resources.
The resulting data can be used to trigger an alert letting a human operator know when
they will need to provide additional resources to the system otherwise risk loss of
productivity. Each of the devices in this example may come from a different vendor (one
specializing in tank controls, another specializing in assembly line devices), however
they are able to communicate together.

Taking the example another step, giving each of the devices some intelligence can
create a self-maintaining system. Giving each device more memory and processing
horsepower can support a solution in which each device has its own artificial intelligence
and is capable of determining what is best in an array of situations the device may
experience. Such solutions will vastly surpass the capabilities of ladder logic currently
used with PLC devices.

These examples can become reality, using existing open-source tools, which are
readily available. This research provides a framework that can be used to build web-
enabled industrial control solutions on resource-constrained devices opening the industry
to standards-based communication mechanisms that provide interoperability with other
web-enabled devices, including those not specific to the industrial control industry.

Consistent and open communication mechanisms remove proprietary communication
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constraints, which currently exist, and allow industrial control vendors to focus on the
features of the device. This kind of freedom will lead to devices that are significantly

more advanced than those which are currently “state of the art.”
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CHAPTER VII

AREAS FOR FUTURE RESEARCH

71 Devices With Fewer Resources

This research utilized a device that provided more resources than most embedded
devices used for industrial solutions. Sensor network motes, for example, have vastly
less memory, processing capabilities, and storage due to their power requirements. The
implementation of web service architectures on such devices using an efficient protocol
such as JSON could yield a non-proprietary communications method enabling easier
expandability and cross vendor sensor network implementations. Further investigation
must be done to verify web service functionality on these devices can be achieved with
adequate response. Investigation of encoding mechanisms can be performed on such
devices as well, identifying performance characteristics on a class of devices with even
fewer resources, as the research described here provides a proof of concept for such

implementations.

7.2 Other protocols
The encoding methods used in this research represent only a small subset of

available encodings available; although methods exist that have not been utilized in a
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web service environment. Additional human readable encoding mechanisms could show

promise as general web service protocols and allow for higher performing infrastructures.

7.3  Intelligent Control Devices

Throughout this research, a portion of a framework has been developed that could
be used to expand the capabilities of control devices. Using an embedded device and
web service architecture together, it is possible to create an intelligent device capable of
various industrial/commercial or home automation tasks, which can be controlled via a
web browser without requiring proprietary frameworks for communication.

As an example, a home or business climate control device could be designed
allowing the operator to view and adjust climate settings within a building using any web
browser. Such a device can acquire weather reports and humidity indexes for the area
and include the captured information in its process for achieving the desired conditions
the user has set.

Another example, more for industrial manufacturing environments, would be a
device or series of devices capable of monitoring inventory of components and would
manufacture the needed inventory for open orders that can be processed during the day,

eliminating a substantial amount of inventory that would otherwise be required.
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7.4  Object-Based Control System

The framework discussed and developed throughout this research can be used as a
basis for an object-oriented control system using embedded devices. Such a control
system can pass objects to a central monitoring station, or in the case of a sensor network
between each mote on the network. Such a solution can make it easier for developers to
interact with the system, as they are able to use object-oriented concepts and apply them
to device communication. Objects defined in the web service can be used in their
application code without the additional development effort required to parse data through
the network stack.

Most popular programming languages provide facilities to communicate with a
web service and more developers are becoming familiar with this paradigm. An
infrastructure utilizing web services is much easier for a developer to become accustomed
to when compared to learning a custom, often-proprietary communication method. Such
a solution would allow a programmer to communicate to an embedded device in the same

way they would any other web service provider.
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APPENDICES

APPENDIX A: DATA OBJECT DETAILS

A set of data type objects was selected for the experiments conducted during the
course of this research. Although multiple experiments were conducted using different
languages, synergies existed between the object types as much as possible. This
appendix identifies the objects used throughout the experiments.

The data type definitions that follow were defined in the web service architecture
implemented on the embedded device. These implementations are selected for this
appendix as they identify the full gamut of data types that were tested throughout the
research.

Due to document space configurations, the complex data types implemented using
multiple layers of the same object will not be provided in this appendix. They are simply
complex objects with an array of strings and a reference to a similar object. Due to issues
found during the process of implementing these objects and the requirements of the web
service framework used, the object could not be referenced recursively, as could be done

using the Microsoft .Net Framework.
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class SInteger(object):
simplelnteger = int

def RandomInt(self):
self.simplelnteger = random.randint(1000,9999)

Figure 51 — Integer Object

class SString(object):
simpleString = '’

def RandomString(self):
self.simpleString =
for i in range(10):
self. simpleString += string.ascii_uppercase[(random.randint(0,25))]

ter

Figure 52 — String Object

class SIntAndString(object):
simplelnteger = int
simpleString = '

def Randomize(self):
self.RandomInt()
self.RandomString()

def RandomInt(self):
self.simplelnteger = random.randint(1000,9999)

def RandomString(self):

self.simpleString = '
for 1 in range{10):

self.simpleString += string.oscii_uppercase[(random.randint(9,25))]

Figure 53 — String and Integer Object
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class ComplexObject(object):
simpleInteger = int
simpleString = "'
complexObject = SIntAndString()

def Randomize(self):
self .RandomInt()
self.RandomString() _
self.complexObject.Randomize()

def RandomInt(self):
self.simplelnteger = random.randint(1900,9999)

def RandomString{self):
self.simpleString = '’
for 1 in range(19):
self.simpleString += string.ascii_uppercase[{random.randint(8,25))]

Figure 54 — Complex Object
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class ComplexObjectStrArray(object):
simpleInteger = int
simpleString = ''
simpleStringArray = [str]
complexObject = SIntAndString()

def Randomize(self):
self.simpleStringArray = [str]
self.RandomInt()
self.RandomString()
self.complexObject.Randomize()
self.RandomStringArray()

def RandomInt(self):
self.simplelnteger = random.randint(1900,9399)

def RandomString(self):
self.simpleString = "'
for 1 in range(10): _
self.simpleString += string.ascii_uppercase[(random.randint(®,25))]

def RandomStringArray(self):
del self.simpleStringArray[0]
for 1 in range(5@):
tempStr = "'
for } in range(19):
tempStr += string.ascii_uppercase[(random.randint{@,25))]

self . simpleStringArray.append(tempSte)

Figure 55 — Complex Object With Array
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APPENDIX B: EXPERIMENT 1 DASHBOARD
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APPENDIX C: TS-7800
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Figure 57 — Technologic Systems TS-7800 Embedded Device [5]
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